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motivation

● want to predict viscosity and thermal 
conductivity for arbitrary fluids...
● accurately
● precisely
● efficiently
● reliably

● numerous molecular simulation methods exist
● “best” is rarely obvious a priori



  

content

● calculation of shear viscosity
● background
● non-linearity issues
● avoiding pitfalls
● comparison with other methods

● calculation of thermal conductivity
● summary



  

background

● shear viscosity:

flux of transverse linear momentum = 

   shear viscosity * shear rate

j z=−⋅

=
v x
 z

Newtonian : 0 as 0

Muller-Plathe, Phys. Rev. E 59, 1999



  

MD methods for viscosity calculation

● transient
● growth or decay of velocity perturbation

● steady-state
● equilibrium

– auto-correlation of fluctuations in flux or shear
– e.g. Einstein or Green-Kubo relations

● non-equilibrium
– e.g. SLLOD

● set shear rate and measure momentum flux

– reverse-NEMD (RNEMD)
● set momentum flux and measure shear rate



  

1) set shear rate  via …
● Lees-Edwards sliding-brick BCs or ...
● deforming simulation box

2) measure resulting momentum flux j = <P
xy
>

(thermostat must account

 for velocity profile)

Evans and Morriss, Statistical Mechanics of Non-equilibrium Liquids (1990)

SLLOD (NEMD) algorithm
(fix nvt/sllod)



  

RNEMD algorithm
(fix viscosity)

Muller-Plathe, Phys. Rev. E 59, 1999

1) from bottom and middle bins, find two particles 
 with “slow” v

x
 (relative to mean bin v

x
)

2) swap v
x
 between these particles

3) measure resulting

 velocity profile

(conserves energy)



  

RNEMD algorithm

Muller-Plathe, Phys. Rev. E 59, 1999

1) from bottom and middle bins, find two particles 
 with “slow” v

x
 (relative to mean bin v

x
)

2) swap v
x
 between these particles

3) measure resulting
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simulation details
(similar to original Muller-Plathe (MP) paper)

● Lennard-Jones fluid
● reduced density = 0.849
● reduced temperature = 0.722

● RNEMD
● 3000 particles
● 10.56 x 10.56 x 31.68 σ   (aka “10x10x30”)
● 20 bins
● 500k steps
● reduced timestep = 0.005



  

● “base case”

● swap target v
x
 every 1 step

● momentum flux = 0.0466 
(equivalent to swapping “slowest” 
v
x
 every 60 steps)

● L
z
 ~ “30” σ

RNEMD viscosity example



  

● “base case”

● swap target v
x
 every 1 step

● momentum flux = 0.0466 
(equivalent to swapping “slowest” 
v
x
 every 60 steps)

● L
z
 ~ “30” σ

● dv
x
/dz = 0.0142

→ η = 3.28 (+/- 0.05)
500k steps, 3000 particles

RNEMD viscosity example



  

● “base case”

● swap target v
x
 every 1 step

● momentum flux = 0.0466 
(equivalent to swapping “slowest” 
v
x
 every 60 steps)

● L
z
 ~ “30” σ

● dv
x
/dz = 0.0142

→ η = 3.28 (+/- 0.05)
500k steps, 3000 particles

● SLLOD: η = 3.40 (+/- 0.12)
500k steps, 1000 particles

● EMD: η
0
 = 3.35 (+/- 0.25)

1M steps, 1000 particles

RNEMD viscosity example



  

RNEMD at high momentum flux
base case



  

RNEMD at high momentum flux

~4x flux increase

base case



  

RNEMD at high momentum flux

~5x flux increase

~4x flux increase

high momentum flux → non-linear velocity profile

base case



  

RNEMD non-linearity
base case



  

~4x flux increase

RNEMD non-linearity
base case



  

~4x flux increase ~5x flux increase

RNEMD non-linearity
base case



  

~4x flux increase

2x L
z
 increase

~5x flux increase

in theory … but it looks like …

ΔT ~ L
z

2  j
z

RNEMD non-linearity

T=
L z

2 j z
2

32
N−2N−4

N 2

base case

Tenney and Maginn, J. Chem. Phys 132, 2010



  

RNEMD non-linearity

● swap moves conserve energy, but …
● they remove heat (entropy) from swap bins

~20x base case flux

Tenney and Maginn, J. Chem. Phys 132, 2010



  

setting RNEMD momentum flux

base case



  

setting RNEMD momentum flux

target flux ΔT actual flux

high excessive < target

moderate reasonable just right

low negligible ≥ target

base case

Tenney and Maginn, J. Chem. Phys 132, 2010



  

RNEMD at low momentum flux
swap every 100 stepsswap every 10 steps

~20% base case flux



  

RNEMD at low momentum flux

~5% base case flux

4x longer simulation
(2M steps)

swap every 100 stepsswap every 10 steps
~20% base case flux

Tenney and Maginn, J. Chem. Phys 132, 2010



  

RNEMD, SLLOD, and EMD results

● SLLOD results fit to Curreau equation:

=
0

12 

,where=shear rate

base case

Tenney and Maginn, J. Chem. Phys 132, 2010



  

RNEMD viscosity summary

● potential advantages
● NVE ensemble
● shear profile is not imposed by deforming space

● disadvantages
● fails at high momentum flux
● “pulse” issues at low flux

● ambiguities
● comparable computational efficiency



  

RNEMD thermal conductivity

● swap kinetic energy instead of momentum
● fix thermal/conductivity

● example: ionic liquid @ 373K

Muller-Plathe, J. Chem. Phys. 106, 1997



  

RNEMD thermal conductivity



  

RNEMD thermal conductivity



  

RNEMD thermal conductivity

● other options
● swap between atoms of any mass (LAMMPS mod)

– hypothetical elastic collision
– available if Steve wants it

● swap molecular (c.o.m) kinetic energy
– allows constraints
– probably more expensive (not implemented in LAMMPS)
– possibly better energy conservation

● instead of swapping, thermostat hot and cold bins
– track steady-state flux
– compute temp/region, fix langevin



  

conclusions

● RNEMD can efficiently provide good viscosity 
results for 'moderate' shear rates

● RNEMD is less robust than SLLOD
● if SLLOD or EMD won't work, consider RNEMD

● RNEMD thermal conductivity calculations are 
less finicky than viscosity calculations
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about RNEMD statistics

● we want the uncertainty of =-j/

● from the mean value theorem, for a reasonable 
number N of independent calculations of a …

● but at low flux,  oscillates around 0+, so  blows up

● consequently, we used a propogation-of-error model:

a ≈ 〈a 〉 ±  〈a
2
〉−〈a〉2

N

=2 j 2
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